北大杨超:以偏微分方程求解为例,AI如何助力科学计算?

 人工智能技术     |      2020-05-16 14:06

作者 | 杨超

编辑 | 蒋宝尚

AI技术,特别是机器学习和强化学习方法,基于实验或者计算产生的数据对所求解的问题进行可计算建模,从而得到复杂问题的有效解决方式,这对当今科学计算领域的研究范式已经产生了巨大影响。与此同时,以深度学习为代表的AI在内部机理、数学理论、基础算法等方面尚不清楚、不完善,AI方法的稳健性、精确度等尚缺乏严格的数学论证,这正对其进一步发展造成严重阻碍。然而,结合机理的思维方式将有可能对面向数据的AI技术,提供新的洞见与研究途径。

2020年5月9日,在未来论坛青创联盟YOSIA Webinar中,开展了AI+科学计算的主题讨论,共有五位嘉宾发表演讲,从AI for Scientific Computing和Scientific Computing for AI两个不同的视角进行前沿讨论。

其中来自北京大学的杨超教授做了题目为“浅论超级计算、人工智能与科学计算的融合发展”的报告。在报告中杨老师介绍到:科学计算和超级计算之间相互促进、共同发展的闭环已经形成了几十年了,人工智能今年巨大的成功为科学计算带来了新思路、新方法、新工具,而科学计算的严谨体系则有助于提升现有人工智能技术的可解释性。

另外,杨老师还以求解偏微分方程举例说明了神经网络这一工具为科学计算带来的帮助,并阐述了超级计算、科学计算、人工智能从模型、算法、软件、硬件多方位融合发展的观点。

注:本文经过杨超老师的审核和校对。

从主流的科研范式来看,认识世界发现世界的三种最主要的科研手段是实验、理论和计算,最近十来年随着数据科学的兴起,基于数据的科学发现被认为是第四种重要的科研范式。而围绕计算和数据有三个非常独立但又相互关联很大的方向,超级计算、科学计算和人工智能。

从计算科学诞生之初,超级计算和科学计算的关系已经建立起来。它们之间的关系可以概括为:超级计算就是为了支撑科学计算的发展,科学计算作为需求牵引、拉动超级计算机性能不断提升。


  • 共5页:
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页