医疗AI公司绕不开的选择难题:开源框架与专用芯片(3)

 人工智能的未来     |      2020-05-15 16:07

连心医疗算法经理Fisher:我们一直和飞桨有合作,在春节期间还一起推出了新冠肺炎的检测模型。

最近除了百度,华为以及旷视等也都推出了自己的框架,百度应该是国内开发最早、发展最成熟的框架。

国内框架的优点是中文的支持友好,和企业直接合作较多以及硬件的直接融合开发等,但是致命的缺点在于其学术界的缺位。

放眼最新的论文,其开源的代码基本都是Tensorflow以及PyTorch的实现。当然如果是比较火热的论文,框架一般也都会及时把相应的代码跟上,但是如果不是大热的论文,都需要自己再复现一下论文。

在目前工程师基本都要掌握Tensorflow和Pytorch两种框架的情景下,让他们再去掌握第三种框架是缺乏动力的。

联影智能研发科学家:基本没有太多接触,主要还是基于飞桨的应用以及开源代码,资料这方面比较少,暂时没有Pytorch和Tensorflow生态圈庞大。所以无论上手,学习,成本都会相应增高。

:如何评价英伟达刚刚开源的医疗AI专用框架MONAI?是否会取代Pytorch在医疗界的位置?

柏视医疗董事长陆遥:MONAI使用PyTorch深度学习框架,旨在提供一种开源、标准化程度高、用户友好、可复现性好、易于集成、高质量的、针对医疗领域特定优化的深度学习框架。

从长期来看,这是趋势,但需要吸引更加多的开发者加入,壮大社区的力量。

它和飞桨影像AI是一个思路,走的是细分领域,依托于英伟达自身的硬件基础,在医疗AI影像上,可以做出更出色的性能。在医疗AI领域,和Pytorch兼容,减少Pytorch用户迁移到MONAI的难度,提高用户对MONAI的使用率,可以实现和Pytorch共同发展。

MONAI在计算效率、并行化训练和部署,以及医疗特定任务的支持上应该会有更好的效果,而Pytorch是一个更基础通用的框架。二者各有所长,未来应该是相互促进的关系。

连心医疗算法经理Fisher:简单的总结就是,不会。

首先,我们要搞清楚MONAI是什么,它在Github上的解释是:MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging。

也就是说,首先它和Pytorch并不是排他的关系,MONAI就是基于Pytorch构建的,包括官方的一些例子,都是会引入Torch,也就没有了什么取代。

在我看来,MONAI更像是一个基于Pytorch的医疗图像数据处理库,针对医疗图像增添了许多图像处理的方法,弥补了Pytorch对于医疗图像的支持不足。

:你们购买哪个厂商的服务器?为什么?

柏视医疗董事长陆遥:服务器的选购主要是考虑成本以及售后服务,在满足基本配置要求的前提下,选用价格成本较低,售后服务较为完善的服务器供应商。NVIDIA提供一站式解决方案,且计算性能优秀,是很好的选择。


  • 共4页:
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 下一页